pyruvic acid has been researched along with 6-[(3-aminophenyl)methyl]-4-methyl-2-methylsulfinyl-5-thieno[3,4]pyrrolo[1,3-d]pyridazinone in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 2 (100.00) | 2.80 |
Authors | Studies |
---|---|
Hu, K; Huang, J; Jiang, R; Li, L; Lin, L; Lv, X; Shen, Y; Tang, L; Wan, J; Yang, Y; Zhang, L; Zhou, H | 1 |
Hao, D; Liu, X; Wang, X; Wang, Z; Yu, J | 1 |
2 other study(ies) available for pyruvic acid and 6-[(3-aminophenyl)methyl]-4-methyl-2-methylsulfinyl-5-thieno[3,4]pyrrolo[1,3-d]pyridazinone
Article | Year |
---|---|
Activation of PKM2 metabolically controls fulminant liver injury via restoration of pyruvate and reactivation of CDK1.
Topics: Animals; Apoptosis; CDC2 Protein Kinase; Galactosamine; Hepatocytes; Lipopolysaccharides; Liver; Liver Diseases; Male; Mice; Mice, Inbred BALB C; Pyridazines; Pyrroles; Pyruvate Kinase; Pyruvates; Pyruvic Acid | 2021 |
Transcriptomic signatures responding to PKM2 activator TEPP-46 in the hyperglycemic human renal proximal epithelial tubular cells.
Topics: Biomarkers; Diabetic Nephropathies; ErbB Receptors; Glucose; Humans; MicroRNAs; Pyridazines; Pyrroles; Pyruvate Kinase; Pyruvic Acid; Transcriptome; Tumor Suppressor Protein p53 | 2022 |